• Phase Transitions in Mesostructured Silica/Surfactant Composites: Surfactant Packing and the Role of Charge Density Matching
    S.H. Tolbert, C.C. Landry, G.D. Stucky, B.F. Chmelka, P. Norby, J.C. Hanson and A. Monnier
    Chemistry of Materials, 13 (7) (2001), p2247-2256
    DOI:10.1021/cm0003727 | unige:3216 | Abstract | Article HTML | Article PDF
 
Time-resolved X-ray diffraction is utilized to follow phase transitions in nanostructured silica/surfactant composites in real time under hydrothermal conditions. The data allow us both to obtain kinetic parameters and to observe intermediate phases. In all cases, changes in the packing of the organic component of these composites drives the transformation, indicating that surfactant packing is a dominant factor in determining the overall structure of these materials. For materials heated in pure water, however, high activation energies for transformation were measured, suggesting that large kinetic barriers can stabilize structures against surfactant-driven rearrangements. Matching between the interfacial charge density of the inorganic silica framework and the charge density of the surfactant headgroups is also found to affect the kinetics of transformation. Lamellar-to-hexagonal transitions, which complement condensation-induced changes in charge density, are observed to be continuous, while hexagonal-to-lamellar transitions, which proceed contrary to these charge density changes, are discontinuous. For materials heated in their high-pH synthesis solutions, more complex phase behaviors are observed. Hexagonal (p6mm) structures transform either to a bicontinuous cubic phase (Ia3d) or to a lamellar structure. Lamellar phases are observed at either long or short polymerization times, while cubic phases dominate at intermediate polymerization times. The production of these different phases can be understood by considering the interplay between organic packing, charge density matching, and changing activation energies. At short times, high charge on the inorganic framework favors transformation to the low-curvature lamellar structures. At very long times, silica condensation both reduces this charge density and cross-links the framework. This cross-linking raises kinetic barriers for transformation and again favors the topologically simpler hexagonal-to-lamellar transition. Transformations to the cubic phase are only observed at intermediate times, when these effects are balanced.
  
  • Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures
    A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke and B.F. Chmelka
    Science, 261 (5126) (1993), p1299-1303
    DOI:10.1126/science.261.5126.1299 | Abstract | Article PDF
A model is presented to explain the formation and morphologies of surfactant-silicate mesostructures. Three processes are identified: multidentate binding of silicate oligomers to the cationic surfactant, preferential silicate polymerization in the interface region, and charge density matching between the surfactant and the silicate. The model explains present experimental data, including the transformation between lamellar and hexagonal mesophases, and provides a guide for predicting conditions that favor the formation of lamellar, hexagonal, or cubic mesostructures. Model Q230 proposed by Mariani and his co-workers satisfactorily fits the x-ray data collected on the cubic mesostructure material. This model suggests that the silicate polymer forms a unique infinite silicate sheet sitting on the gyroid minimal surface and separating the surfactant molecules into two disconnected volumes.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024